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1. Introduction 

 

One of the most striking features of empirical economic data is that some 

countries and regions within a country grow faster than others. Economic theory has 

long been aware of this problem and various explanations have been provided in the 

past (Solow, 1956; and Barro & Sala-i-Martin, 1995 for a review). A certain school of 

thought reached an optimistic view of reality by predicting that a set of economies 

(countries or regions) will tend to assume a common level of output per capita (that is 

they will “converge”) in the presence of constant returns to scale and decreasing 

productivity of capital. However, many empirical studies show contrasting, less 

optimistic, results. 

Apart from the evident interest in the subject at a World scale, regional 

convergence studies have recently experienced an acceleration of interest due to the 

issues raised in Europe by the unification process. Since large differentials in per capita 

GDP across regions are regarded as an impediment to the completion of the economic 

and monetary union, the narrowing of regional disparities is indeed regarded as a 

fundamental objective for the European Union policy. Hence, the problem of testing 

convergence among the member States of the Union and measuring its speed emerges 

as a fundamental one in the view of policy evaluation. 

Surprisingly enough, the literature on the empirical measurement of spatial 

convergence has not moved at the same speed with the increased demand. Indeed, most 

of the empirical work is still based on the computation of some basic statistical 

measures in which the geographical characteristics of data play no role. For instance, in 

their celebrated paper Barro and Sala-i-Martin (1992) base their models on parameters 

like the variance of logarithm (to identify a σ-convergence) and the simple regression 

coefficients (to identify a β-convergence) estimated using standard OLS procedures. In 

general most empirical studies in this field base their conclusions on cross-sectional data 

referred to geographical units almost systematically neglecting two remarkable features 

of spatial data. First of all, spatial data represent aggregation of individuals within 

arbitrary geographical borders that reflect political and historical situations. The choice 

of the spatial aggregation level is therefore crucial because different partitions can lead 

to different results in the modelling estimation phase (Arbia, 1988). Secondly, it is well 

known that regional data cannot be regarded as independently generated because of the 
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presence of spatial similarities among neighbouring regions (Anselin, 1988; Anselin and 

Bera, 1998). As a consequence, the standard estimation procedures employed in many 

empirical studies can be invalid and lead to serious biases and inefficiencies in the 

estimates of the convergence rate. 

In this paper, we present an empirical study of the long-run convergence of per 

capita income in Italy (1951-2000) based on a level of aggregation (the NUTS 3 EU 

regions corresponding to the 92 Italian provinces) which is fine enough to allow for 

spatial effects (like spatial regimes and regional spill-overs) to be properly modelled. 

The empirical analysis is divided into parts. In the first one, we use “traditional” 

techniques, i.e. σ- and β−convergence approaches. As far as the β−convergence analysis 

is concerned, a non-parametric local regression model is firstly applied to identify non-

linearities (i.e. multiple regimes) in the relationship between growth rates and initial 

conditions. Then, by using information on the presence of spatial regimes, we apply 

cross section regressions accounting for spatial dependence. In the second empirical 

part, we exploit the alternative kernel density approach (based on the concept of intra-

distribution dynamics) suggested by Quah (1997) and we investigate the role of spatial 

dependence by applying a proper conditioning scheme.  

The layout of the paper is the following. In Section 2, we present a review of spatial 

econometric techniques that incorporate spatial dependence and spatial heterogeneity 

within the contest of a β-convergence modelling. In Section 3, we report the results of 

an empirical analysis based on the 92 Italian provinces (European NUTS-3 level) and 

the per capita income recorded in the period ranging from 1951 to 2000 and we show 

the different estimates of the convergence speed obtained by using different modelling 

specifications for spatial effects. In Section 4, we discuss some possibility of including 

spatial dependence in stochastic kernels estimation and provide empirical evidences 

based on the same data set. Finally, in Section 5 we discuss the results obtained and 

outline possible extensions of the present work. 

 

2. Spatial dependence and spatial regimes in cross-section growth 

behaviour  

 

The most popular approaches in the quantitative measurement of convergence are 

those based on the concepts of σ- and β-convergence (Durlauf and Quah, 1999 for a 
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review). Alternative methods are the intra-distribution dynamics approach (Quah, 1997; 

Rey, 2000) and, more recently, the Lotka-Volterra predator-prey specification (Arbia 

and Paelinck, 2002). 

 

2.1 σ-convergence 

 

The σ-convergence approach consists on computing the standard deviation of 

regional per capita incomes and on analysing its long-term trend. If there is a decreasing 

trend, then regions appear to converge to a common income level. Such an approach 

suffers from the fact that the standard deviation is a measure insensible to spatial 

permutations and, thus, it does not allow to discriminate between very different 

geographical situations (Arbia, 2001).1 Furthermore, as argued by Rey and Montoury 

(1998), σ-convergence analysis may “mask nontrivial geographical patterns that may 

also fluctuate over time” (p. 7-8). Therefore, it is useful to analyse the geographical 

dimensions of income distribution in addition to the dynamic behaviour of income 

dispersion. This can be done, for instance, by looking at the pattern of spatial 

autocorrelation based on the Moran’s I statistics (Cliff and Ord, 1973). 

 

2.2 β-convergence 

 

So far, the β-convergence approach has been considered as one of the most 

convincing under the economic theory point of view. It also appears very appealing 

under the policy making point of view, since it quantifies the important concept of the 

speed of convergence. It moves from the neoclassical Solow-Swan exogenous growth 

model (Solow, 1956; Swan, 1956), assuming exogenous saving rates and a production 

function based on decreasing productivity of capital and constant returns to scale. On 

this basis authors like Mankiw et al. (1992) and Barro and Sala-i-Martin (1992) 

suggested the following statistical model 

 

                                                
1 Consider two regions each dominating the extreme end of an income scale. Now let there be mobility 
along the income scale. For the sake of argument, say each ended up at the exact position formerly 
occupied by its counterpart. According to the concept of σ convergence, nothing has changed. In reality 
the poor has caught up with the rich while the rich has slide down to the position of the poor.  
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with yt,i (t=1,…, T; I=1,…,n) the per capita income at time t in region i, µt,i the 

systematic component and εt,i the error term with  
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with λ the speed of convergence, which measures how fast economies will converge 

towards the steady state. The assumption on the probability model implicitly made in 

this context is that εt,i is normally distributed (0, σ2) independently of lnyt,i. Finally, 

concerning the sampling model, it is assumed that { },,........., ,2,1, nttt εεε  are independent 

observations of the probability model.  

Model (1) is usually directly estimated through non-linear least-squares (Barro 

and Sala-i-Martin, 1995) or by re-parametrizing the statistical model setting 

)1( ke λβ −−=  and estimating β by ordinary least squares. Absolute convergence is said 

to be favoured by the data if the estimate of β is negative and statistically significant. If 

the null hypothesis (β = 0) is rejected, we would conclude that not only do poor regions 

grow faster than rich ones, but also that they all converge to the same level of per capita 

income. 

 

2.3 Spatial dependence in the cross section growth equation 

 

However, the sampling model of independence is inadequate to the considered 

case, since regional observations are likely to display positive spatial dependence with 

distinct geographical patterns (Cliff and Ord, 1973; Anselin, 1988).  

A more correct statistical model that takes spatial correlation into account is the 

so-called spatial lag model (Anselin and Bera, 1998), where spatial dependence is 

accounted for by including a serially autoregressive term of the dependent variable so 

that the systematic component in (1) is re-specified as  
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with L[.] the spatial lag operator and the error term again assumed normally distributed 
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are assumed independent errors of the probability model in the hypothesis that all 

spatial dependence effects are captured by the lagged term. The parameters of model (3) 

can be estimated via maximum likelihood (ML), instrumental variables or generalized 

method of moments (GMM) procedures. 

An alternative way to incorporate the spatial effects is to leave unchanged the 

systematic component and to model the error term in (1) as an autoregressive random 

field, for instance assuming that  

 

 ititit uL ,,, )( += εδε     (4) 

 

and reformulate a probability model for the u’s by assuming them to be normally 

distributed (0, σu
2) independently of lnyt,i and randomly drawn. We call this second 

model lagged error model (Anselin and Bera, 1998). Again the parameters can be 

estimated by using ML or GMM procedures (Conley, 1999).  

 

2.4 Spatial regimes and non-linearities in the cross section growth equation 

 

The spatial econometric literature raises also the problem of spatial heterogeneity, 

that is the lack of stability over space of the behavioural or other relationships under 

study (Anselin, 1988). This implies that functional forms and parameters vary with 

location and are not homogenous throughout the data set. With regard to the cross-

section growth analysis, the bulk of empirical studies has implicitly assumed that all 

economies (countries or regions) obey a common linear specification, disregarding the 

possibility of non-linearities or multiple locally stable steady states in per capita income. 

Notable exception are Durlauf and Johnson (1995), Hansen (2000), Liu and Stengos 

(1999), Durlauf, Kourtellos and Minkin (2001). Durlauf and Johnson (1995) propose a 

tree-regression approach to identify multiple regimes and find evidence that is 
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consistent with a multiple-regime data-generating process as opposed to the traditional 

one-regime model. Hansen (2000) uses a Threshold Regression model to formally test 

for the presence of a regime shift. Liu and Stengos (1999) employ a semi-parametric 

approach to model the regression function and, as in Durlauf and Johnson and Hansen, 

emphasize the role of initial output and schooling as variables with a potential to affect 

growth in a non linear way through possible thresholds or otherwise. Durlauf, 

Kourtellos and Minkin (2001)use a local polynomial growth regression to explicitly 

allow for cross-country parameter heterogeneity. 

The basic idea underlying the multiple regime analysis is that the level of per 

capita GDP on which each economy converges depends on some initial conditions 

(such as initial per capita GDP or initial level of schooling), so that, for example, 

regions with an initial per capita GDP lower than a certain threshold level converge to 

one steady state level while regions above the threshold converge to a different level. A 

common specification that is used to test this hypothesis considers a modification of the 

systematic component (2) that take the form: 
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it
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where x is a threshold that determines whether or not region i belongs to the first or the 

second regime. The same adjustment can be applied to the systematic component in (3). 

A problem with multiple regime analysis is that the threshold level can not be 

(and must not be) exogenously imposed. In order to identify economies whose growth 

behaviour obeys a common statistical model, it is necessary to allow the data to 

determine the location of the different regimes. In our empirical analysis, we adopt the 

graphical output of nonparametric local regression techniques as a data sorting method 

which allows the data to select regimes endogenously.  

 

3. Empirical evidence from Italian provinces 
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The empirical study focuses on the case of Italian provinces, which correspond to 

the European NUTS-3 level in the official UE classification.2 The analysis is based on a 

newly compiled database on per capita GDP for the 92 provinces over the period 1951-

2000.3  

We start with a σ-convergence analysis of per capita income in the 92 provinces 

and the related spatial patterns over the period 1951-2000 (Section 3.1). In Section 3.2, 

3.3 and 3.4 we will move to the β-convergence analysis by taking explicitly into 

consideration the spatial heterogeneity and the spatial dependence patterns displayed by 

data.  

 

3.1 σ  convergence and spatial autocorrelation 

 

Figure 1 shows the dynamics of the provinces’ real per capita GDP dispersion, 

measured in log terms, over the period 1951-2000, synthetically measured by its 

coefficient of variation (the ratio between the standard deviation and the national 

average). Regional inequalities diminished by more than one half over the entire period, 

but the sharp trend towards convergence was confined to the period between 1951 and 

1970. This is due partly to the significant effort to ‘exogenously’ implement economic 

development in the South (through the Cassa del Mezzogiorno) and partly to the 

‘endogenous’ development of the North-Eastern regions (through the emergence of 

industrial districts). The following period was, instead, characterized by a substantial 

invariance of the income inequalities. 

Figure 1 also displays the pattern of spatial autocorrelation for the provincial 

incomes over the same period of time, based on the Moran’s I statistics. There is very 

strong evidence of spatial dependence as the I-Moran statistics are significant (at the 

probability level 0.01) for each year. Differently from Rey and Montoury (1998) that 

examined the case of the United States, however, convergence and spatial dependence 

tend to move in the same direction (the simple correlation between Moran’s I statistics 

                                                
2 The compilation of provincial data on value added has been based on estimates elaborated by the Istituto 
Guglielmo Tagliacarne, which involve the adoption of direct and indirect provincial indicators to 
disaggregate regional product within provinces. These estimates have been transformed at constant prices 
by using sectoral/regional value added deflators. The source of population data is ISTAT (National 
Institute of Statistics). 
3 Italy is currently divided into 103 provinces, grouped into 20 regions. Over the period considered (1951-
1999), however, the boundaries of some administrative provinces changed. Only the provinces that 
already existed in 1951 (92 units) have been considered for the empirical analysis. 
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and the coefficient of variation is –0.9). The minimum level of spatial dependence was 

registered for the first year of the sample (1951), when the income dispersion was at its 

maximum level. Then, I-Moran increased very strongly till the ‘70s, that is the period of 

strong convergence. Finally, it remained stable and high over the ’90s.  

 

Figure 1 

 

Thus, after reaching a stable level of a-spatial inequality (measured by the 

coefficient of variation) in 1970, it follows a period of strong polarization at constant 

levels of inequality (for a distinction between a-spatial inequality and polarization, see 

Arbia, 2000, 2001).  

 

3.2   β convergence: basic results 

 

We start from the OLS estimates of the unconditional model of β-convergence 

and test for the presence of different possible sources of model misspecification (spatial 

heteroskedasticity and spatial autocorrelation). The general objective of this analysis is 

to assess whether the results of previous studies at provincial level (e.g. Fabiani and 

Pellegrini, 1997; Cosci and Mattesini, 1995), carried out using the OLS method, were 

actually biased for the presence of spatial effects.  

Table 1 displays the cross-sectional OLS estimates of absolute convergence for 

the 92 Italian provinces. The dependent variable of the model is the growth rate of 

province’s per capita income, while the predictor introduced in each model is the initial 

level of per-capita income (expressed in natural logarithms). Both variables are scaled 

to the national average. In order to consider the trend break identified in the σ 

convergence analysis, we estimate models for the two periods 1951-1970 and 1971-

2000.  

 

Table 1 

 

Our results appear very much in line with the previous findings on the 

development of Italian regions/provinces. The coefficient of initial per capita GDP is –

2.03 and significant at p<0.01 for the first period- confirming the presence of absolute 
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convergence over that period, while it is –0.26 and non-significant for the second period 

- suggesting lack of convergence.4 Similarly, the convergence rate was fairly high 

(2.5%) during the first period and declined substantially (to 0.3%) during the period 

1970-2000. The lack of β-convergence starting from the beginning of the '70s was also 

suggested by Paci and Pigliaru (1995), Cellini and Scorcu (1995) and Fabiani and 

Pellegrini (1997).  

 

Table 2 

 

Table 1 also reports some diagnostics to identify misspecifications in the OLS 

cross-sectional model. Firstly, the Jarque-Bera normality test is always far from 

significant. Consequently, we can safely interpret the results of the various 

misspecification tests (heteroskedasticity and spatial dependence tests) that depend on 

the normality assumption, such as the various Lagrange Multiplier tests.5 Since no 

problems were revealed with respect to a lack of normality, the Breusch-Pagan statistic 

is given. Its values are far from significant, indicating that there are no 

heteroskedasticity problems. This is confirmed by the robust White statistics.  

The last specification diagnostics refers to spatial dependence. Three different 

tests for spatial dependence are included: a Moran’s I test and two Lagrange multiplier 

(LM) tests. As reported in Anselin and Rey (1991), the first one is very powerful against 

both forms of spatial dependence: the spatial lag and spatial error autocorrelation. 

Unfortunately, it does not allow discriminating between these two forms of 

misspecification. Both LM (error autocorrelation) and LM (spatial lag) have high values 

and are strongly significant, indicating significant spatial dependence, with an edge 

towards the spatial error.  

The results described so far suggest that the original unconditional model, which 

has been the workhorse of much previous research, suffers from a misspecification due 

to omitted spatial dependence. Thus, we attempt alternative specifications. An 

approach, adopted for the case of the United States by Rey and Montoury (1998), 

                                                
4 σ and β convergence analyses thus give coherent results, suggesting that in our case Galton fallacy 
(Quah, 1993) does not represent a serious problem. 
5 Heteroscedasticity tests have been carried out for the case of random coefficient variation (the squares 
of the explanatory variables were used in the specification of the error variance to test for additive 
heteroscedasticity). 
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consists of the application of spatial econometric tools directly to the unconditional 

model.  

An alternative approach, proposed in this paper, consists of firstly detect and 

identifying the presence of spatial regimes, and then using maximum likelihood spatial 

dependence models to control for the presence of spatial autocorrelation. This approach 

is based on the assumption that the observed spatial autocorrelation might depend (at 

least in part) on heterogeneity (multiple regimes), in the form of different intercepts 

and/or slopes in the regression equation for subsets of the data.  

 

3.3   Non-linearities in cross section growth behaviour 

 

The main concern of this section is the identification of growth patterns (non-

linearities) in the data. In figure 2 we plot the growth rate against initial per capita GDP 

for the two periods 1951-70 and 1971-2000, and a nonparametric estimation of the 

relationship between these two variables.6  

The nonparametric regressions in figure 2 identify non-linear relationships between 

the level of GDP and the growth rate. In particular, for the period 1951-70 (Panel A), at 

low income levels (that is initial levels of relative log incomes lower than –0.26) growth 

rates are high and slightly increasing (denoting a diverging process), while regions with 

relative initial incomes higher than –0.26 follow a converging path. For the period 

1971-2000, at low income levels growth rates are initially high and then decreasing up 

to a minimum (corresponding to a relative log of GDP per capita of –0.34). After that 

level, we cannot observe any relationship between the two variables. These results 

suggest that the initial income coefficient in the miss-specified linear model inherits the 

convergence exhibited among regions associated with a common steady state in the 

correctly specified multiple regime process. 

By using this information, we split the sample in two regimes for both periods (see 

Table 3) and run OLS regression models with different intercepts and slopes (see Table 

4).7 The results clearly show that the spatial regime specification is much more reliable 

                                                
6 In particular, we ran a lowess (locally weighted scatterplot smoothing) regression, that is a local 
polynomial regression with tricube weight function and nearest-neighbour bandwidth selection (see 
Cleveland, 1979; Cleveland and Devlin, 1988). For the first period the lowess has been specified as a 
local linear model with span = 0.5; for the second period a local quadratic model with span = 0.5 has been 
applied. 
7 Table 3 shows that the low income spatial regime includes mainly Southern provinces (given in bold 
letters), i.e. the least developed provinces in Italy. However, within the low income regime we find over 
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than the one used in table 1: the two groups of provinces tend to converge to different 

steady states. For the first period (characterised by strong convergence), we estimate a 

negative slope only for the second regime (the convergence speed is 5.9%); for the 

second period, the coefficient on the initial income is significantly negative only for the 

first regime (the convergence speed is 4.9%). 

 

Table 3 

 

Table 4 

 

However, the most remarkable feature is that, even controlling for spatial regime 

effects, there is significant spatial dependence remaining in the cross-sectional OLS 

models. Conversely, the Breusch-Pagan test for heteroscedasticity is not significant in 

any of the sub-samples.  

 

3.4   β convergence and spatial dependence 

 

Since the problem of spatial autocorrelation among the residuals is not removed 

with the spatial regime specification, in the remainder of the paper we will restrict 

attention to the spatial dependence modelling and will leave out of consideration the 

problem of spatial heterogeneity.  

Tables 5 and 6 display the results of maximum likelihood estimates of spatial 

error and spatial lag models for the two periods, respectively under the hypothesis of 

unique and double regime.8 The parameters associated with the spatial error and the 

spatial lag terms are always highly significant. This confirms the pronounced pattern of 

spatial clustering for growth rates found in Section 3.1 by looking at the Moran’s I 

statistics. 

 

Table 5 

                                                                                                                                                   
the period 1951-1970 even some provinces belonging to central (Lazio, Umbria, Marche, Toscana) and 
North-Eastern (Friuli Venezia Giulia, Veneto) regions. On the other hand, some large southern provinces 
such as Napoli, Sassari, Palermo and Cagliari are included in the second regime. 
8 An OLS cross-regressive model, which includes a spatial lag of the initial per capita income level, has 
been also tested for each period and for different specifications. The coefficient of this variable, however, 
was never found to be significant. In fact the diagnostics indicate that there is significant spatial 
dependence remaining in the cross-regressive model. 
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Table 6 

 

Let us focus our attention on table 6 (spatial regimes). The fit of the spatial error 

model (based on the values of Schwartz Criterion) is always higher than that of both 

OLS and maximum likelihood spatial lag models. The spatial lag model outperforms the 

OLS model only for the second period. Furthermore, the spatial diagnostics (LM and 

LR tests) suggests that for the second period the spatial lag model is more reliable than 

the spatial error model. As a consequence, the spatial error model with spatial regimes 

must be regarded as the most appropriate specification for the first period; while the 

spatial lag model with spatial regimes must be regarded as the most appropriate 

specification for the second period. Compared to the OLS estimates, the initial per 

capita income coefficients and the implied convergence rates did largely remained the 

same for the second sub-period. Conversely, they increased for the first period (the one 

of fast convergence).  

In conclusion, the results reported in Tables from 1 to 6 provide strong evidence 

of spatial effects in the unconditional convergence model widely applied in the 

literature. These effects have some important implications in terms of the estimated 

convergence speed. In particular, our results clearly suggest that, in the presence of a 

strong positive spatial autocorrelation both in the per capita income levels and in the 

growth rates, the OLS rate of convergence is strongly under-estimated and this in turn is 

due to the fact that regional spill-over effects (knowledge is diffused over time through 

cross region interaction) allow regions to grow faster than one would expect. Indeed, in 

the presence of significant spatial error dependence, the random shocks to a specific 

province are propagated throughout the country. The introduction of a positive shock to 

the error for a specific province has obviously the largest relative impact (in terms of 

growth rate) on this province. However, there is also a spatial propagation of this shock 

to the other provinces. The magnitude of the shock spill-over dampens as the focus 

moves away from the immediate neighbouring provinces (see also Rey and Montoury, 

1998).  

However, the coexistence of spatial dependence and spatial regimes9 implies that 

there is a stumbling block to the knowledge diffusion: the formation of economies in 

                                                
9 Controlling for spatial dependence in the b convergence approach does not eliminate the evidence of 
spatial regimes.  
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clusters according to interaction means that knowledge does not spill outside the cluster, 

hence generating club convergence. 

 

4. Intra-distribution dynamics and spatial effects 

 

4.1 Stochastic kernel estimates 

 

The spatial econometric approach used so far represents a very important tool to 

control for the effects of spatial dependence and spatial heterogeneity. However, the β-

convergence approach has been strongly criticised on the ground that it suppresses the 

very cross-section income dynamics one wishes to investigate. Generally speaking, a 

negative association between growth rates and initial conditions can be consistent with a 

rising, a declining and a stationary cross-section income dispersion. A method that 

cannot differentiate between convergence, divergence or stationarity loses its validity on 

testing ground. This failure is essentially a simple intuition of what is termed Galton’s 

fallacy (Quah, 1993). The limits of the σ-convergence approach have been already 

discussed in section 2.1. 

Because of the limits of the σ- and  β-convergence approaches, the last generation 

of empirical growth studies has departed from the standard techniques of econometric 

analysis, adopting an approach aimed at estimating the whole income dynamics rather 

than just fitting the first two moments and thus revealing the evolution of income 

distribution. In particular, according to Quah (1993, 1996a-b, 1997) the convergence 

study must be based on the examination of shape and dynamics of the distribution. 

For the evaluation of the first of the two aspects, that is the shape of the 

distribution, it is possible to use nonparametric techniques of estimation of the 

univariate density function. The advantage consists on less rigidity of the starting 

hypotheses, so that, as Silverman (1985) said, “the data speak themselves”.  

Figure 3 shows a sequence of kernel-smoothed densities of log-relative per capita 

incomes across the 92 Italian provinces (i.e. the natural logarithm of the ratio between 

the province’s income and the national average) taken at different points in time. The 
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kernel-smoothed estimates are obtained using a Gaussian Kernel with normal optimal 

bandwidths chosen according to the mean squared error criteria.10 

 

Figure 3 

 

To better understand this figure, note that -0.5 on the horizontal axis corresponds 

to half of the national average income, 0.0 indicates the national average and so on. The 

height of the curve over any point gives the probability for any province to have that 

relative rate. Thus, the area under the curve between -1.0 and 0.0 gives the total 

likelihood for a province to have a relative per capita income equal to or lower than the 

national average. In 1951, the income distribution appears very asymmetric (a positive 

skewness is clearly shown): there are few relatively rich provinces and a lot of relatively 

poor provinces. In 1970 a nascent twin-peakdness is being to be visible. In 2000, the 

first peak appears more pronounced: there is a clustering together of the very rich and a 

clustering together of the very poor. These results confirm the shape dynamics 

underlying the hypothesis of “convergence clubs”.  

Let’s now turn to the mobility dynamics. A way to quantify the intra-distribution 

dynamics is the bivariate kernel which estimates the joint density of the income 

distribution at time t and t+10 (Figure 4). From any point on the axis marked Period t 

extending parallel to the axis marked Period t+10 the stochastic kernel is a probability 

density function. Roughly speaking, this probability density describes transitions over 

10 years from a given income value in period t. Such a representation is equivalent to a 

transition probability matrix with a continuum of rows and columns. It describes how 

the cross-sectional distribution at time t evolves into that at t+10. Figure 4 confirms the 

idea, suggested by the parametric analysis, that over the fifty years considered the 

regional growth pattern in Italy has followed a polarisation process rather than a global 

convergence path. The probability density mass is concentrated along the 45-degree 

diagonal: elements in the distribution remain where they began. Moreover, a twin-peaks 

property again manifests (contour plot makes this clearer). This is a confirmation that 

                                                
10 The kernel estimator is a smoothed version of the histogram used to estimate a probability density 
function f of a random variable X (e.g. income). The estimator can be expressed as 

( ) ∑
=








 −
=

n

i

i

h
Xx

K
nh

xf
1

1 , where n is the number of finite observations in x; h is the smoothing 

parameter called the bandwidth; and K is the kernel function of the variable x which can adopt various 
functions. 
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there exists clustering of economies into clubs at the neighbourhood of their initial 

income groups. 

 

Figure 4 

 

4.2  Spatial conditioning 

 

The emerging twin-peaks picture in Figure 4 is an instance of what Quah (1997) 

calls “unconditional dynamics”. This author also proposes a method to “explain” 

distribution dynamics, which is very different “from discovering a particular coefficient 

to be significant in a regression of a dependent variable on some right-hand side 

variables” (p. 44), as we performed in the previous section. This method is called 

“conditioning”: it is based on “an empirical computation that helps us understand the 

law of motion in an entire distribution” (p.44). 

A conditioning schemes is articulated in two steps. Firstly, a spatially filtered 

variable of each province per capita income is constructed.11 The filtered variable can be 

interpreted as that part of income of each province which is not explained by the 

spillover effects from the contiguous provinces. Then, with nonparametric analyses the 

actual and the conditioned distributions are compared. The idea is that if inter-regional 

spill-overs play a key role in the regional growth process, the spatial filtering removes 

the twin-peaks features observed in the unconditional distribution of income. 

Conversely, if the spatial contiguity is not influent, the distribution of the transformed 

variable maintains its original characteristics: the polarisation can not be explained in 

terms of spatially concentrated spill-overs.  

The snapshot densities for the filtered variables displayed in Figure 5 no longer 

show emerging twin-peaks features. The relation between the actual and the conditioned 

distributions is represented in Figure 6 (Panel A). Differently from Figure 4, we can 

observe a counter-clockwise shift in mass to parallel the Original axis, as well as a 

dissolving of twin-peaks. Finally, Figure 6 (Panel B) shows how the cross-sectional 

distribution of the filtered income at time t evolves into that at time t+10. The evidence 

                                                
11 The filtered variable is the ratio of per capita income to weighted average neighbourhood income: 

∑
=

j
jj

i
i y

y
y

ϖ
~ . 
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suggests that conditioning each province’s observation on the behaviour of its 

neighbours, the income distribution collapses over time to a degenerate point limit: most 

of the mass in the graph is concentrated around the national average value (0.0) of the 

period t+10 axis. There is no more evidence of polarisation. Thus, one might say that 

the polarisation earlier identified in the unconditional distribution-dynamics of cross-

province incomes is “well-explained” by physical geography. Not only are rich 

provinces located close to other rich ones, such tendencies have magnified through 

time. 

To sum up, the unconditional dynamics of Italian province income data strongly 

confirm the idea of polarisation (the convergence club hypothesis): poor provinces are 

not catching up with rich ones; rather, there is a clustering together of the very rich, a 

clustering together of the very poor and a vanishing of the middle class. Moreover, 

spatial factors account for a large part of the distribution of incomes across provinces: 

the spatial filtering removes the features of the unconditional dynamics. This confirms 

that spillover and convergence clubs are spatially concentrated: most interaction and 

exchange occur within groups of provinces physically close to one another (rich 

provinces are typically close to – interact more with – other rich ones; similarly poor 

economies are typically close to other poor ones). Without spillover effects, the 

probability for a province to migrate from one to another an income class and to 

converge towards an average value increases. 

 

5. Concluding remarks 

 

In the present paper we have examined the importance of spatial dependence and 

spatial heterogeneity amongst data in estimating the convergence process of regional 

per capita incomes, exploring both the β-convergence and stochastic kernel approaches. 

Concerning the β-convergence approach, we have shown that, by examining the time 

evolution of per capita incomes of the 92 Italian provinces (European NUTS-3 Regions) 

in the period 1951-2000, neglecting the spatial nature of data leads both to a 

misspecification of the growth model and to severe underestimation of convergence 

rates. Firstly, the evidence of two spatial regimes in both periods suggests that 

convergence occurred only among sub-groups of regions. Precisely, in the first period 

(1951-70) only “relatively high income” regions follow a convergence path; in the 
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second period (1971-2000) only “relatively low income” regions show convergence. 

Secondly, in the period examined, income levels and growth rates are characterised by a 

strong spatial correlation, thus showing the presence of strong regional interdependence 

and spill-overs. As a consequence, a region experiencing growth propagates positive 

effects onto the neighbouring regions thus producing an acceleration of the convergence 

process. By taking this element into consideration the rate of convergence calculated by 

means of OLS results appear strongly underestimated. In the period 1951-70, the 

standard OLS analysis suggests a speed of convergence among “relatively high income” 

regions of 5.9%, whereas our spatially corrected models suggest a value of 7.3%. In the 

second sub-period (1971-2000) the speed of convergence among “relatively low 

income” regions is 4.9%, if estimated with the OLS, and rises up to 5.6% in the proper 

spatial modelling specification.  

Moving on to a kernel density approach, we have considered the shape dynamics 

and mobility analysis associated with our data set and shown that inter-regional spill-

over play a crucial role in the analysis of growth processes and convergence. In fact the 

twin-peak feature which is displayed by the data (consistent with other authors’ 

findings) is removed by a procedure of spatial filtering. In this way our study, while 

confirming a convergence club hypothesis for Italy 1951-2000, shows that these clubs 

are spatially concentrated and this effect reduces the probability of converging by 

migrating from one income class to the other. 

The present results are of paramount importance in terms of policy evaluation and 

suggest that spatial effects captured by the models presented here are important 

elements to be considered in targeting resources.  

The analysis reported here is preliminary in many respects. First of all, the 

convergence analysis carried out here uses data in the per capita income. Yet growth 

theories make predictions about labour productivity not income! Growth models 

concentrate on aggregate production function and assume full employment. Thus, they 

make no predictions about unemployment and labour force participation. As it was 

suggested elsewhere (e.g. Boldrin and Canova, 2001) this makes all the difference in the 

empirical analysis. Indeed, the observed inequalities at the provincial level can be due to 

the combination of three factors namely: i) differences in labour productivity, ii) 

differences in employment rates, and iii) interactions between productivity and 

employment rates. In a future paper, we will address this aspect by looking at a recently 
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compiled database on labour productivity and employment rates for the 95 Italian 

provinces.  

Secondly, in the present paper we have not considered the effect of explanatory 

variables other than the initial income level. Future research effort should move towards 

the testing for the presence of conditional convergence by introducing into 

consideration conditioning variables like human capital and infrastructure in the 

presence of spatial dependence.  

Finally, the non parametric approach initially considered here can be extended in 

order to include other conditional factors different from the simple spatial contiguity. 

Furthermore the provisional hypotheses set out in this paper could be validated using 

different empirical data.  
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Figure 1: Italian provinces convergence of per-capita income and related 
spatial autocorrelation in the period 1951-2000 
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Table 1: Per Capita Income Growth of Italian Provinces 

OLS Estimates 

(numbers into brackets refer to the p-values) 

 

 1951-1970 1971-2000 

α 0.067 
(0.484) 

0.008 
(0.864) 

β 
-2.026 
(0.000) 

-0.262 
(0.142) 

Goodness of fit   
Adjusted R2 0.418 0.013 
Log Likelihood -112.998 -51.853 
Schwartz Criterion 235.040 112.751 
Regression Diagnostics   

Jarque-Bera 2.505 
(0.285) 

1.458 
(0.482) 

Breusch-Pagan 0.562 
(0.453) 

0.000 
(0.982) 

White test 1.899 
(0.386) 

1.157 
(0.560) 

Moran’s I 6.950 
(0.000) 

3.722 
(0.000) 

LM (error) 42.247 
(0.000) 

11.123 
(0.001) 

LM (lag) 7.230 
(0.007) 

7.861 
(0.005) 

 

 



 25

 

Table 2 – Comparison of the convergence rates estimated with the 

different modelsa 

 

 1951-
1970 

1971-
2000 

Unconditional model (OLS estimates)  0.025 0.003 

Spatial error model (ML estimates) 0.053 0.022 

Spatial lag  model (ML estimates) 0.023 0.003 

I -0.006 0.049 Spatial regimes (OLS 
estimates) II 0.059 0.001 

I 0.020 0.086 Spatial error and spatial 
regimes: different intercepts 
and slopes (ML estimates) II 0.073 0.000 

I -0.005 0.056 Spatial lag and Spatial 
regimes: different intercepts 
and slopes (ML estimates) II 0.054 0.001 

a Convergence Rate=
( )
k

?
β−

−=
1log
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Figure 2: Per capita GDP levels vs growth rates (nonparametric 

regression) 
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Table 3 – Spatial regimes  

(Southern provinces are given in bold letters) 

 

Period 1951-1970 

 
Group 1 
(41 provinces) 
(yt < -0.26) 
 

Avellino, Potenza, Agrigento, Enna, Campobasso, 
Caltanissetta, Benevento, Caserta, Frosinone, 
Catanzaro, Lecce, Cosenza, Reggio Calabria, 
Rovigo, Salerno, Ragusa, Matera, Teramo, 
Trapani, Chieti, L'Aquila, Foggia, Treviso, Nuoro, 
Brindisi, Rieti, Latina, Siracusa, Pesaro, Padova, 
Perugia, Ascoli P., Bari, Catania, Udine, Forlì, 
Arezzo, Viterbo, Belluno, Messina, Modena 

Group 2 
(51 provinces) 
(yt > -0.26) 

Reggio E., Sassari, Taranto, Macerata, Mantova, 
Verona, Cuneo, Ferrara, Palermo, Brescia, Asti, 
Pescara, Cremona, Vicenza, Parma, Sondrio, 
Piacenza, Bergamo, Pistoia, Trento, Ravenna, Siena, 
Lucca, Cagliari, Venezia, Massa, Terni, Alessandria, 
Pisa, Napoli, Ancona, Grosseto, La Spezia, Pavia, 
Bologna, Bolzano, Como, Gorizia, Novara, Aosta, 
Imperia, Vercelli, Livorno, Varese, Firenze, Torino, 
Savona, Trieste, Milano, Roma, Genova 

 
Period 1971-2000 

 

Group 1 
(21 provinces) 
(yt < -0.34) 

Avellino, Agrigento, Potenza, Catanzaro, Lecce, 
Benevento, Cosenza, Campobasso, Enna, Reggio 
Calabria, Caserta, Bari, Catania, Salerno, Brindisi, 
Foggia, Nuoro, Caltanissetta, Ragusa, Palermo, 
Trapani 

Group 2 
(71 provinces) 
(yt > -0.34) 
 

Teramo, Matera, Napoli, Messina, Chieti, Rieti, 
L'Aquila, Perugina, Pescara, Rovigo, Frosinone, 
Macerata, Ascoli P., Sassari, Cagliari, Udine, 
Pesaro, Taranto, Padova, Asti, Viterbo, Forlì, Terni, 
Cuneo, Imperia, Lucca, Belluno, Treviso, Pistoia, 
Siracusa, La Spezia, Ferrara, Alessandria, Grosseto, 
Ancona, Vicenza, Sondrio, Latina, Arezzo, Verona, 
Venezia, Savona, Vercelli, Massa, Gorizia, Novara, 
Bergamo, Pavia, Bolzano, Siena, Mantova, Livorno, 
Cremona, Genova, Ravenna, Piacenza, Brescia, 
Pisa, Firenze, Trento, Reggio E., Como, Modena, 
Parma, Trieste, Roma, Bologna, Torino, Varese, 
Aosta, Milano 
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Table 4: Per Capita Income Growth of Italian Provinces 

Spatial Regime Models - OLS Estimates 

(numbers into brackets refer to the p-values) 

 
 1951-1970 1971-2000 

α1 
1.257 

(0.001) 
-1.246 
(0.004) 

β1 
0.719 

(0.306) 
-2.646 
(0.006) 

α2 
0.287 

(0.009) 
0.017 

(0.739) 

β2 
-3.604 
(0.000) 

-0.181 
(0.588) 

Goodness of fit   
Adjusted R2 0.560 0.080 
Log-likelihood -99.113 -47.610 
Schwartz Criterion 216.314 113.306 
Regression Diagnostics   

Jarque-Bera 4.367 
(0.112) 

3.977 
(0.137) 

Moran’s I 5.522 
(0.000) 

3.264 
(0.001) 

LM (error) 25.250 
(0.000) 

8.005 
(0.004) 

LM (lag) 3.224 
(0.072) 

7.946 
(0.005) 
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Table 5: Per Capita Income Growth of Italian Provinces 

Spatial Dependence Models (ML Estimates) 

(numbers into brackets refer to the p-values) 

 

  
1951-1970 

 
1971-2000 

 
Spatial 
error 

model 

Spatial 
lag model 

Spatial 
error 

model 

Spatial 
lag model 

α -0.092 
(0.705) 

-0.027 
(0.766) 

-0.135 
(0.294) 

-0.015 
(0.740) 

β 
-3.386 
(0.000) 

-1.940 
(0.000) 

-1.652 
(0.000) 

-0.352 
(0.042) 

δ 0.767 
(0.000)  0.719 

(0.000)  

γ  0.281 
(0.005)  0.330 

(0.006) 
Goodness of fit     
Log Likelihood -83.317 -109.656 -40.519 -48.429 
Schwartz Criterion 175.677 232.877 90.083 110.422 
Regression Diagnostics     
LR test (Spatial error 
model vs. OLS) 

59.362 
(0.000)  22.669 

(0.000)  

LM (lag) 9.854 
(0.002)  25.382 

(0.000)  

LR test (Spatial lag 
model vs. OLS)  6.684 

(0.009)  6.850 
(0.008) 

LM (error)  42.649 
(0.000)  2.498 

(0.113) 
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Table 6: Per Capita Income Growth of Italian Provinces 

Spatial Dependence Models With Spatial Regimes (ML Estimates) 

(numbers into brackets refer to the p-values) 

 
 1951-1970 1971-2000 

 
Spatial 
error 

model 

Spatial lag 
model 

Spatial 
error 

model 

Spatial lag 
model 

α1 
0.608 

(0.071) 
1.103 

(0.001) 
-1.450 
(0.001) 

-1.165 
(0.003) 

β1 
-1.707 
(0.013) 

0.557 
(0.423) 

-3.191 
(0.000) 

-2.794 
(0.001) 

α2 
0.027 

(0.899) 
0.211 

(0.045) 
-0.036 
(0.761) 

-0.022 
(0.642) 

β2 
-4.020 
(0.000) 

-3.433 
(0.000) 

-1.449 
(0.000) 

-0.090 
(0.768) 

δ 0.767 
(0.000)  0.655 

(0.000)  

γ  0.178 
(0.070)  0.343 

(0.003) 
Goodness of 
fit     

Log 
Likelihood -76.833 -97.587 -36.138 -43.946 

Schwartz 
Criterion 171.753 217.773 90.363 110.501 

Regression 
Diagnostics     

LR test 
(Spatial error 
model vs. 
OLS) 

44.560 
(0.000)  22.942 

(0.000)  

LM (lag) 9.775 
(0.002)  152.103 

(0.000)  

LR test 
(Spatial lag 
model vs. 
OLS) 

 3.062 
(0.080)  7.326 

(0.006) 

LM (error)  26.933 
(0.000)  0.443 

(0.505) 
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Figure 3: Densities of log relative per capita income across 92 Italian provinces 

(1951, 1970, 1971 and 2000) 
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Figure 4: Log Relative income dynamics across 92 Italian provinces (10 

year horizon) 
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Figure 5: Densities of spatial conditioned relative per capita income across 

92 Italian provinces (1951, 1970, 1971 and 1999) 
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Figure 6: Spatial conditioned relative income dynamics across 92 Italian 

provinces (10 year horizon) 

 
 Panel A (Actual vs Conditioned values) 

 

  
 

 Panel B (Intra-distribution analysis on conditioned values) 

 

  
 
 


