

Ethanol and sustainability issues – The case of Brazil and new opportunities for innovation and development

Thiago Romanelli, Dr Dept of Rural Engineering College of Agriculture "Luiz de Queiroz" University of Sao Paulo

Sao Paulo– June 18, 2008

Brazilian Center for Biofuels's background

Brazilian Center for Biofuels at the University of Sao Paulo – School of Agronomy – Sao Paulo State

The roles and functions of the Brazilian Center for Biofuels:

"A Think Tank" @ the University of Sao Paulo

Contribution to:

- •Strategic and applied research
- S&T&I supporting and influencing policies
- •Awareness raising and capacity building
- •Mitigation of GHGs and carbon projects

Global and larger frameworks supporting biofuels deployment

Oil consumption and prices: a security issue

IPCCC and Stern report – environmental and economic impacts of GHGs

USA – goals of reducing 10% gasoline consumption in 20 years

EU – Directives on Biofuels 2003/30/EC & Biofuels Vision 2030

Kyoto targets and voluntary commitments

Cost effective substitution and future technologies available....

Competitive prices and being renewable

Some remarks...

Energy intensity economies – developed versus developing countries Asymmetric impacts of GHGs in countries – the poor will suffer the most Livelihoods ... trends in consumption patterns and cultural behavior The role of renewable energy sources Technologies and biofuels: competitiveness and innovation

System dynamics and their multiple interactions

Brazil is well positioned in terms of economy, size and potential

Key indicators of the BRIC countries

	GDP/c	cap	GDP (b	illion)	Area	Agribus	s (M ha)	Рор	Poverty ¹⁾	HDI
	PPP	US\$	PPP	US\$	(M KM2)	Areable	Potential	(million)	% рор	
US	41.399	42.101	12.427	12.485	9,20	173		280	13%	0,94
China	7.204	1.703	9.412	2.225	9,60	142		1.300	10%	0,76
India	3.344	714	3.633	775	3,30	160		1.050	25%	0,60
Brazil	8.584	4.316	1.577	792	8,50	59	360	180	22%	0,79
Russia	11.041	5.369	1.576	766	17,10	123		150	25%	0,80
Brazil's positionin	g	Average developing country	g	9 th larges econom	st y	5 th in ar with gre agricu poter	ea but eatest ltural ntial		Average Hu Developm Index	iman ent

1) The poverty line set by the Chinese government is approximately 1/13th the standard set by the World Bank. China's poverty line of 0.2 US\$ /person daily should be reevaluated. If a daily standard of 0.3 US\$ were set the number below poverty standard would triple

Brazil - the energy matrix & the role of renewable sources

The role of sugar cane in the energy matrix

Sugar cane value chain

Flex fuel car

Total production of sugarcane in Brazil increased significantly with the deployment of the ethanol vehicles

The evolution of the Brazilian ethanol industry - M tons of processed sugarcane

Flex fuel cars account for more than 80% of total cars produced in Brazil

Evolution of light vehicles production and Total Brazilian Fleet – '000 vehicles

04 405

Brazilian Fleet (2007)

Mitigation measures due to biofuels

Emissões Efetivas e Evitadas no Transporte

Ethanol productivity – liters/ha growing at 2,8%/year in the last 30 years

Brazilian sugar-cane productivity is 11% higher and has increased more than twice the world productivity

Agricultural productivity – M tons/ha

Sugarcane is the most energy efficient raw material to produce ethanol

Energy balance of ethanol production from different feedstocks

ENERGY EFFICIENCY

Sugar Cane in Brazil

Energy factory – 1 ton of cane is equivalent of ...

1/3 sugar – 145 kg
1/3 fibre – 140 kg
1/3 leaves and tops – 140kg

First generation • 1ha = 9.000 I ethanol - 65 b of oil

• 6.5 MM ha of sugar cane – Uptake/year = 25,8 M tons of CO₂ equivalent

Sugar allometric patterns and challenges

Cane plant parts.

Candidate genes and traits: the roles for GM sugar cane •Water deficit

- •Max. productivity potential with irrigation
- •Longer management cycles
- •Sugar versus fiber content: new allometric models

Variety	Stage	Yield	Trash*	Trash/stalk
	of cut	(t/ha)	(t/ha)	ratio
SP79-1011	Plant cane	120	17.8	15%
	2 nd ratoon	92	15.0	16%
	4 th ratoon	84	13.7	16%
SP80-1842	Plant cane	136	14.6	11%
	2 nd ratoon	101	12.6	13%
	4 th ratoon	92	10.5	11%
RB72454	Plant cane	134	17.2	13%
	2 nd ratoon	100	14.9	15%
	4 th ratoon	78	13.6	17%
Average		104	14.4	14%

* Dry matter

International weekly journal of science

www.nature.com

Citrus pathogen sequenced

......

Isotope geology Strange sulphates

AIDS Mbeki responds

13 July 2000

\$10.00

to critics

Molecular logic

Chemistry meets computing

21

Ð. My. 0 22 11 Reload Search Netscape Print Security Shop Back Home Bookmarks 🏼 🉏 Location: http://www.faPESP.BR/ FAI

👘 What's Rel -

stituição lios à Pesquisa acão Tecnolóaica ramas Especiais adores C&T ortação oos Fapesp amento Processo nulários Expressa vênios ista Fapesp icações itec/Patentes a do Site das Freaüentes

Sugar Cane EST Genome Project

SUCEST is part of the ONSA network, a network of research laboratories in the State of São Paulo funded by FAPESP to implement its Genome Program. The aim of the project is to identify 50,000 sugarcane genes. The project will be considered finished when this goal is reached or when 300,000 reads are deposited.

About Sucest

General, Organization, History, Data Mining, **Bioinformatics**, FAO, Sponsors

Agenda

Important Dates, Meetings, Events

Teams & People

Teams, People, Search People

Web Site

Info, Site Map, Site Search

Services [Private]

Object Search, Reports, Search, Submission, Library

Public Reports

Project Progress, Current Status

Download Docs

Sequencing Protocols, Micro-Prep Sheet, DNA Sequencing Guide, Other Forms

Related Links

Other EST projects, Fapesp Genome projects, Genome Research Centers

Site Search [Advanced search]			
	Go		
	News		

The Sugar Cane EST Proj

Older news in History

Genome Program

Last update: 2001-05-24

Some estimates say Brazil has about 263 million ha of available land for sugar cane. It is the largest land availability in the world. Low productivity pastures for cattle takes over most of the available land.

Available land in Brazil

Туре	Area (Mha)
Total country	851
Native Amazon Forest	370
 Secondary Amazon Forest and Others 	180
Native Forests	6
Pasture	197
Temporary Crops	58
Permanent Crops	8
Available land	263
 Available land with low impact¹⁾ 	90

...without having to displace food production, as seen in recent years. **Brazilian Main Cropped Areas** (MM Ha) CAGR 2001-2006 Cattle (MM) Cattle 3,5% 209 207 205 196 185 6,7% Wheat <mark>2,4</mark> 3,0 **176** 2,8 2,5 -1,5% Rice 3,9 2,5 3,7 4,2 1,7% Bean 3,9 3,2 <mark>2,1</mark> 3,2 4,3 1.74,4 6,6 5,8 5,8% Sugarcane 3,2 5,6 4,3 5,4 3,9 5,2 5,0 12,2 13,0 Corn 0,0% 12,8 13,2 12,3 13,0 23,3 22,7 21,4 Soybean 10,2% 18,5 16,3 14,0 2001 2002 2003 2004 2005 2006

Source: MAPA; CONAB

Footprint and productivity explain the sugarcane promise as a 2nd Gen biofuels feedstock in Brazil.

Unlike 1st generation ethanol, cellulosic ethanol yield does not vary significantly between feedstocks in terms of gallons / ton. Therefore, the determining factor of end yield will be ton / hectare of biomass for each feedstock, giving sugarcane an advantage over other crops.

Sugarcane producing regions in Brazil

An land use approach: the supply side

- INTERNATIONAL AND NATIONAL DEMANDS: food & fuel
- SUSTAINABLE USE OF LAND AND LANDSCAPES
- ADDED VALUE OF BIOENERGY MATERIALS
- INTEGRATION OF AGRICULTURE/FORESTS
- DIVERSIFYING THE PORTFOLIO OF FARMER'S OPTIONS

DESMATAMENTO

Source: Brazilian bovine flock → IBGE. Pesquisa agropecuária municipal. Accessed 12/09/2007; Bovine flock and pasture areas in São Paulo → Amaral, A.M.P. et al. Animal production estimates in the São Paulo state for 2006. Economic ionformation. São Paulo: Instituto de Economia Agrícola, v.37, n.4, p.91-104, abr.2007.

Technologies for biomass conversion – 2nd generation of biofuels

Second generation and feedstocks

Other feedstocks for ethanol second generation

Source of feedstock	Area	Production	Produtivity	Proprieties (%)			Detential
	[000 ha]	[000 t/year]	[t/ha.year]	lignin	celullose	hemicelullose	Potential
Cane Straw	6,600	72,600	9 a 13	26	37	28	High
Bagasse	6,600	72,600	9 a 13	20	41	25	High
Corn stover	11,549	64,029	5 a 8	15	30 a 45	50 a 35	Medium
Soybean stover	22,933	80,747	3 a 4	15 a 25	30 a 40	25 a 35	Medium
Rice stover	3,919	2,937	4 a 6	23 a 35	36 a 40	-	Medium
Eucalyptus residues	4,000	94,600	22 a 24	20	45	30	High
Pine residues	2,000	38,700	18 a 20	28	42	27	Medium
Pastures	115,000	460,000	3 a 5	10 a 30	25 a 40	35 a 50	Low

Resources		Technologies	Markets
 Dedicated energy farming Agriculture Forestry Agricultural & forestry by- products Straws, cattle residues and other residues from agriculture Forest residues 	Collection Transportation Storage Pre-processing	Oleochemical • Chemical and physical refining (esterification , hydro-treating) Thermochemical • Combustion • Pyrolysis -> bio-crude • Gasification -> bio-syngas • Refining and upgrading of bio-syngas or bio-crudes	Energy • Heat • Electricity Fuels • Bio-oil/bio-crude • Naphtha • Gasoline • Distillates • Methanol • Ethanol • Ethers • Esters • Hydrogen
Other by-products & residues Industrial residues Urban wastes Others 		<i>Biological</i> • Fermentation • Enzymatic catalysis	 By-Products Glycerol FT Specialties Alcohols Others

Biotechnology is supporting the deployment of bioenergy and biofuels production in four main interconnected areas

Just the production of biofuels at competitive costs is not sufficient now ...beyond yield We need to understand biofuels externalities and energy balances

Sectoral policies affecting ethanol

- •Energy
- •Transport
- •Agriculture
- •Environment
- Conservation of biodiversity
- •Economics
- •etc

Bioelectricity forecast from sugar cane and possible competition for bagasse in the near future – opportunity costs

Biofuels Certification – "The Babel of Certifications" EU Directives European Union Ethanol Biofuels Certification Meó Consulting Team **German Government PBCB** Sustainable Production of Biomass Brazilian Biofuels Program **Cramer Commission** Certification **Dutch Government Brazilian Goverment RTFO Renewable Transport Fuel Obligation UK Government** Several certification RTSB initiatives are under **Round Table on Sustainable Biofuels**

Switzerland

National Certifications SEKAB, GREENERGY Sweden, United Kingdom

discussion now

How to attend to all certification discussions?

Some issues to consider....

Brazilian frameworks supporting S&T&I in biofuels

• Good examples from Pro-Alcool - ca. US\$ 2 billion – 30 years

•Federal level -Ministry of Science & Technology - Agencies – CNPq and FINEP

Ministry of Education - CAPES

• State level – SP - the case of FAPESP

 Innovation law in BR – being implemented – facilitate interactions between academia and private sector

Players and investments in sugarcane & ethanol R&D in Brazil.

Crops and biofuels R&D initiatives and experience

- More than 15 universities, 14 research centers and 150 researchers focus on biofuels in only one initiative (Bioetanol project)
- Only in CTC (sugarcane technology center) more than 300 people work in R&D activities
- Efforts are made to share knowledge between universities and research centers (ex: Bioetanol project, conferences)
- International participation in R&D initiatives (Bioethanol Project, Oxiteno, Votorantim)
- Country is a world leader in the production of sugarcane plants capital goods (ex: Dedini)

Innovation and scientific achievement on biofuels feedstocks

- Productivity improvements through sugarcane genetic modifications, from 55 tons/ha in 1970 to 75 tons/ha in 2006
- Almost 300 sugarcane varieties developed by CTC

	 Almost 80% of investments in biofuels in Brazil come from the private sector
	 In 2005 MCT (Science and Technology Ministry) invested US\$840 MM in R&D, 21% of which went to agriculture-related research (US\$176MM)
Investments in R&D	 US\$105 MM to be invested between 2003 and 2008 in agroenergy by MCT
	 Votorantim invested US\$ 40 MM in biotechnology in the last 4 years developing 15 transgenic sugarcane varieties

Biofuels framework for innovation

Arranjo Produtivo Local do Álcool da Região do Piracicaba Piracicaba Regional Ethanol Cluster Arreglo Productivo Local del Alcohol de la Región del Piracicaba

Biofuels Technology Park @ Piracicaba, SP

Concluding remarks - Four pillars on ethanol competitiveness 1/2

•Need for a global market for biofuels

•Improving the logistics

•Planning the sugar cane expansion sustainably

Innovation

Deploying the global opportunities – can't afford not to have... 2/2

Concentration and concerted efforts: focus and scale

Continuity: 30 years of investments worthwhile – the Brazil case

Complementarity: bioenergy sources and expertise – need for an interdisciplinary approach

Commitment: to make a change

Coordination