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1. Introduction

Recent theoretical advances have brought income and wealth distributions back

into a prominent position in growth and development theories, and as determinants of

speci¯c socio-economic outcomes, such as health or levels of violence. Empirical investi-

gation of the importance of these relationships, however, has been held back by the lack

of su±ciently detailed high quality data on distributions. Household surveys that include

reasonable measures of income or consumption can be used to calculate distributional

measures but at low levels of aggregation these samples are rarely representative or of

su±cient size to yield statistically reliable estimates. At the same time, census (or other

large sample) data of su±cient size to allow disaggregation either have no information

about income or consumption, or measure these variables poorly. This note outlines a

statistical procedure to combine these types of data to take advantage of the detail in

household sample surveys and the comprehensive coverage of a census. It extends the

literature on small area statistics (Ghosh and Rao (1994), Rao (1999)) by developing esti-

mators of population parameters which are non-linear functions of the underlying variable
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of interest (here unit level consumption), and by deriving them from the full unit level

distribution of that variable.

In examples using Ecuadorian data, our estimates have levels of precision compara-

ble to those of commonly used survey based welfare estimates - but for populations as

small as 15,000 households, a `town'. This is an enormous improvement over survey

based estimates, which are typically only consistent for areas encompassing hundreds of

thousands, even millions, of households. Experience using the method in South Africa,

Brazil, Panama, Madagascar and Nicaragua suggest that Ecuador is not an unusual case

(Alderman, et. al. (2002), and Elbers, Lanjouw, Lanjouw, and Leite (2002)).

2. The Basic Idea

The idea is straightforward. Let W be an indicator of poverty or inequality based

on the distribution of a household-level variable of interest, yh. Using the smaller and

richer data sample, we estimate the joint distribution of yh and a vector of covariates,

xh: By restricting the set of explanatory variables to those that can also be linked to

households in the larger sample or census, this estimated distribution can be used to

generate the distribution of yh for any sub-population in the larger sample conditional on

the sub-population's observed characteristics. This, in turn, allows us to generate the

conditional distribution of W , in particular, its point estimate and prediction error.
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3. The Consumption Model

The ¯rst concern is to develop an accurate empirical model of ych; the per capita

expenditure of household h in sample cluster c: We consider a linear approximation to

the conditional distribution of ych;

ln ych = E[ln ychjxTch] + uch = xTch¯ + uch;(1)

where the vector of disturbances u » F(0, §):2 Note that, unlike in much of econometrics,

¯ is not intended to capture only the direct e®ect of x on y : Because the survey estimates

will be used to impute into the census, if there is (unmodelled) variation in the parameters

we would prefer to ¯t most closely the clusters that represent large census populations.

This argues for weighting observations by population expansion factors.

To allow for a within cluster correlation in disturbances, we use the following speci¯-

cation:

uch = ´c + "ch;

where ´ and " are independent of each other and uncorrelated with observables, xch:

Residual location e®ects can greatly reduce the precision of welfare estimates, so it is

important to explain the variation in consumption due to location as far as possible

with the choice and construction of xch variables. We see in the example below that

location means of household-level variables are particularly useful. Clusters in survey data
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typically correspond to enumeration areas (EA) in the population census. Thus, means

can be calculated over all households in an EA and merged into the smaller sample data.

Because they include far more households, location means calculated in this way give a

considerably less noisy indicator than the same means taken over only the households in

a survey cluster.3

An initial estimate of ¯ in equation (1) is obtained from OLS or weighted least squares

estimation. Denote the residuals of this regression as buch: The number of clusters in
a household survey is generally too small to allow for heteroscedasticity in the cluster

component of the disturbance. However, the variance of the idiosyncratic part of the

disturbance, ¾2";ch; can be given a °exible form. With consistent estimates of ¯, the

residuals ech from the decomposition

buch = buc: + (buch ¡ buc:) = b́c + ech;
(where a subscript `.' indicates an average over that index) can be used to estimate the

variance of "ch. We propose a logistic form,

¾2(zch; ®; A;B) =

"
Aez

T
ch® +B

1 + ez
T
ch®

#
:(2)

The upper and lower bounds, A and B, can be estimated along with the parameter vector

® using a standard pseudo maximum likelihood procedure.4 This functional form avoids

both negative and extremely high predicted variances.
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In what follows we need to simulate the residual terms ´ and ": Appropriate dis-

tributions can be determined from the cluster residuals b́c and standardized household
residuals

e¤ch =
echb¾";ch ¡

·
1

H
§ch

echb¾";ch
¸
;(3)

respectively, where H is the number of observations. The second term in e¤ch adjusts

for weighting at the ¯rst stage. One can avoid making any speci¯c distributional form

assumptions by drawing directly from the standardized residuals. Alternatively, per-

centiles of the empirical distribution of the standardized residuals can be compared to the

corresponding percentiles of standardized normal, t, or other distributions.

The estimated variance-covariance matrix; weighted by the household expansion fac-

tors, is used to obtain GLS estimates of the parameters and their variance.5

4. The Welfare Estimator

Although disaggregation may be along any dimension - not necessarily geographic -

for convenience we refer to our target populations as `villages'. There areMv households

in village v and household h has mh family members. To study the properties of our

welfare estimator as a function of population size we assume that the characteristics xh

and the family size mh of each household are drawn independently from a village-speci¯c

constant distribution function Gv(x;m): the super population approach.
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While the unit of observation for expenditure in these data is typically the household,

we are more often interested in poverty and inequality measures based on individuals.

Thus we write W (mv;Xv;¯;uv); where mv is an Mv¡vector of household sizes in village v;

Xv is aMv£k matrix of observable characteristics and uv is anMv¡vector of disturbances.

Because the vector of disturbances for the target population, uv, is unknown, we es-

timate the expected value of the indicator given the village households' observable charac-

teristics and the model of expenditure. This expectation is denoted ¹v = E[W jmv; Xv; ³v];

where ³v is the vector of model parameters, including those which describe the distribu-

tion of the disturbances. For most poverty measures W can be written as an additively

separable function of household poverty rates, w(xh, ¯; uh); and ¹v can be written

¹v =
1

Nv

X
h2Hv

mh

Z
uh

wh(xh; ¯;uh)dFvh (uh) ;(4)

where Hv is the set of all households in village v, Nv =
P

h2Hv mh is the total number of

individuals, and Fvh is the marginal distribution of the disturbance term of household h in

village v: When W is an inequality measure, however, the contribution of one household

depends on the level of well-being of other households and W is no longer separable.

Then we need the more general form,

¹v =

Z
u1

:::

Z
uMv

W (mv;Xv; ¯; uv) dFv(uMv ; :::; u1);(5)

where u1:::uMv are the disturbance terms for the Mv households in village v:
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In constructing an estimator of ¹v we replace ³v with consistent estimators, b³v, from
the ¯rst stage expenditure regression. This yields b¹v = E[W j mv; Xv;b³v]. This expec-

tation is often analytically intractable so simulation or numerical integration are used to

obtain the estimator e¹v:
5. Properties and Precision of the Estimator

The di®erence between e¹, our estimator of the expected value of W for the village,

and the actual level may be written

W ¡ e¹ = (W ¡ ¹) + (¹¡ b¹) + (b¹¡ e¹):(6)

(The index v is suppressed here and below). Thus the prediction error has three

components:6

Idiosyncratic Error - (W ¡ ¹)

The actual value of the welfare indicator for a village deviates from its expected value,

¹, as a result of the realizations of the unobserved component of expenditure. When W

is separable, this error is a weighted sum of household contributions:

(W ¡ ¹) = 1

mM

1

M

X
h2Hv

mh

·
w(xh; ¯; uh)¡

Z
uh

w(xh; ¯; uh)dF (uh)
¸
;(7)

where mM =N/M is the mean household size among M village households. As the

village population size increases, new values of x, and m are drawn from the constant
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distribution function Gv(x;m): To draw new error terms in accordance with the model

uch = ´c + "ch complete enumeration areas are added, independently of previous EAs.

Since mM converges in probability to E[m],

p
M(¹¡W ) d! N (0;§I) as M !1;(8)

where

§I =
1

(E[m])2
E[m2

hVar(wjxh; ¯)].(9)

When W is a non-separable inequality measure there usually is some pair of functions

f and g; such that W may be written W = f(y; g);where y = 1
N

P
h2Hv mhyh and g =

1
N

P
h2Hv mhg(yh) are means of independent random variables.

7 The latter may be written

g =
1

mM

1

M

X
h2Hv

mhg(yh);(10)

which is the ratio of means of M iid random variables gh = mhg(yh) and mh. Assuming

that the second moments of gh exist, g converges to its expectation and is asymptotically

normal. The same remark holds for y: Thus, non-separable measures of welfare also

converge as in (8) for some covariance matrix §I.

The idiosyncratic component, VI = §I=M; falls approximately proportionately in M .

Said conversely, this component of the error in our estimator increases as one focuses on

smaller target populations, which limits the degree of disaggregation possible.8
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Model Error - (¹¡ b¹)
This is the second term in the error decomposition of equation (6). The expected

welfare estimator b¹ = E[W j mv; Xv;b³v] is a continuous and di®erentiable function of b³,
which are consistent estimators of the parameters. Thus b¹ is a consistent estimator of ¹
and:

p
s(¹¡ b¹) d!N (0;§M) as s!1;(11)

where s is the number of survey households used in estimation.9 We use the delta method

to calculate the variance §M; taking advantage of the fact that ¹ admits of continuous

¯rst-order partial derivatives with respect to ³: Let 5 = [@¹ /@³ ]jb³ be a consistent
estimator of the derivative vector. Then VM = §M/s ¼ 5TV(b³)5, where V(b³) is the
asymptotic variance-covariance matrix of the ¯rst stage parameter estimators.

Because this component of the prediction error is determined by the properties of the

¯rst stage estimators, it does not increase or fall systematically as the size of the target

population changes.

Computation Error - (b¹¡ e¹)
The distribution of this component of the prediction error depends on the method of

computation used. When simulation is used this error has the asymptotic distribution

given below in (14). It can be made as small as computational resources allow.
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The computation error is uncorrelated with the model and idiosyncratic errors. There

may be some correlation between the model error, caused by disturbances in the sample

survey data, and the idiosyncratic error, caused by disturbances in the census, because

of overlap in the samples. However, the approach described here is necessary precisely

because the number of sampled households that are also part of the target population is

very small. Thus, we can safely neglect such correlation.

6. Computation

We use Monte Carlo simulation to calculate: b¹, the expected value of the welfare
measure given the ¯rst stage model of expenditure; VI, the variance in W due to the id-

iosyncratic component of household expenditures; and the gradient vector 5 = [@¹/@³]jb³.
Let the vector bur be the rth simulated disturbance vector. Treated parametrically, bur

is constructed by taking a random draw from anMv-variate standardized distribution and

pre-multiplying this vector by a matrix T, de¯ned such that TT T = b§: Treated semi-
parametrically, bur is drawn from the residuals with an adjustment for heteroscedasticity.

We consider two approaches. First, a location e®ect, b́rc; is drawn randomly, and with
replacement, from the set of all sample b́c: Then an idiosyncratic component, e¤rch; is

drawn for each household · with replacement from the set of all standardized residuals

and erc· = b¾";c·(e¤rch). The second approach di®ers in that this component is drawn only
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from the standardized residuals e¤ch that correspond to the cluster from which household

·'s location e®ect was derived. Although b́c and ech are uncorrelated, the second approach
allows for non-linear relationships between location and household unobservables.

With each vector of simulated disturbances we construct a value for the indicator,

cWr = W (m;bt; bur); where bt = Xb̄, the predicted part of log per-capita expenditure. The
simulated expected value for the indicator is the mean over R replications,

e¹ = 1

R

RX
r=1

cWr:(12)

The variance of W around its expected value ¹ due to the idiosyncratic component

of expenditures can be estimated in a straightforward manner using the same simulated

values,

eVI = 1

R

RX
r=1

(cWr ¡ e¹)2:(13)

Simulated numerical gradient estimators are constructed as follows: We make a positive

perturbation to a parameter estimate, say b̄k, by adding ±jb̄kj, and then calculate bt+;
followed by cW+

r = W (m;bt+; bur), and e¹+. A negative perturbation of the same size is

used to obtain e¹¡. The simulated central distance estimator of the derivative @¹=@¯kjb³ is
(e¹+¡ e¹¡)=(2±jb̄kj): As we use the same simulation draws in the calculation of e¹, e¹+and
e¹¡, these gradient estimators are consistent as long as ± is speci¯ed to fall su±ciently
rapidly as R ! 1 (Pakes and Pollard (1989)). Having thus derived an estimate of the
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gradient vector 5 = [@¹=@³]jb³ , we can calculate eVM = 5TV(b³)5.
Because e¹ is a sample mean of R independent random draws from the distribution of

(W jm;bt; b§), the central limit theorem implies that

p
R(e¹¡ b¹) d!N (0;§C) as R!1;(14)

where §C =Var(W jm;bt; b§):
When the decomposition of the prediction error into its component parts is not im-

portant, a far more e±cient computational strategy is available. Write

ln ych = x
T
ch¯ + ´c(³) + "ch(³);

where we have stressed that the distribution of ´ and " depend on the parameter vector

³. By simulating ³ from the sampling distribution of b³, and f´rcg and f"rchg conditional
on the simulated value ³r, we obtain simulated values fyrchg, consistent with the model's

distributional characteristics, from which welfare estimates W r can be derived (Mackay

(1998)). Estimates of expected welfare, ¹, and its variance are calculated as in equations

(12) and (13). Drawing from the sampling distribution of the parameters replaces the

delta method as a way to incorporate model error into the total prediction error. Equation

(13) now gives a sum of the variance components eVI + eVM; while §C in equation (14)
becomes §C =Var(W jm;X;b³;V(b³)):
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7. Results

We apply the approach using household per capita expenditure as our measure of

well-being, yh; but others could be used, such as assets, income, or health status. Our

smaller detailed sample is the 1994 Ecuadorian Encuesta Sobre Las Condiciones de Vida,

a household survey following the general format of a World Bank Living Standards Mea-

surement Survey. It is strati¯ed by 8 regions and is representative only at that level.

Our larger sample is the 1990 Ecuadorian census.

Models are estimated for each stratum. Hausman tests indicate that expansion factors

have a statistically signi¯cant e®ect on our coe±cients, so we weight accordingly (see

Deaton (1997)). Subsequent analysis of the resulting estimates of welfare for localities

in rural Costa indicates that this choice has a substantial e®ect on estimated welfare

rankings. (See Elbers, Lanjouw, and Lanjouw (2002) for a fuller discussion of all results.)

Most of the e®ect of location on consumption is captured with available explanatory

variables. In the rural Costa stratum, for example, the estimated share of the location

component in the total residual variance, b¾2´=b¾2u; falls from 14% to 5% with the inclusion

of location means (but no infrastructure variables) and to just 2% with the addition of

information about household access to sewage infrastructure.10 Using the latter model,

in that stratum we cannot reject the null hypothesis that location e®ects are jointly zero

in a ¯xed e®ects speci¯cation.
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Heteroscedasticity models are selected from all potential explanatory variables, their

squares, cubes and interactions.11 In all strata, chi-square tests of the null that estimated

parameters are jointly zero reject homoscedasticity (with p-values < 0.001). As with

weighting, subsequent analysis for rural Costa indicates that allowing this °exibility has

a substantial e®ect on estimated welfare rankings of localities.

For some strata in Ecuador the standarized residual distribution appears to be ap-

proximately normal, even if formally rejected by tests based on skewness and kurtosis.

Elsewhere, we ¯nd a t(5) distribution to be the better approximation. Relaxing the

distributional form restrictions on the disturbance term and taking either of the semi-

parametric approaches outlined above makes very little di®erence in the results for our

Ecuadorian example.

Simulation results for the headcount measure of poverty and the general entropy (0.5)

measure of inequality are in Table I. (For other measures see Elbers, et. al. (2002).) We

construct populations of increasing size from a constant distribution Gv(x;m) by drawing

households randomly from all census households in the rural Costa region. They are

allocated in groups of 100 to pseudo enumeration areas, with `parroquias' of a thousand

households created out of groups of ten EAs. We continue aggregating to obtain nested

populations with 100 to 100,000 households. For each population, the table shows esti-

mates of the expected value of the welfare indicator, the standard error of the prediction,
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and the share of the total variance due to the idiosyncratic component. The location

e®ect estimated at the cluster level in the survey data is applied to EAs in the census.

In all cases the standard error due to computation is less than 0.001.

Looking across columns one sees how the variance of the estimator falls as the size

of the target population increases. For both measures the total standard error of the

prediction falls to about ¯ve percent of the point estimate with a population of just

15,000 households. At this point, the share of the total variance due to the idiosyncratic

component of expenditure is already small, so there is little to gain from moving to higher

levels of aggregation. The table also shows that estimates for populations of 100 have

large errors Clearly it would be ill advised to use this approach to determine the poverty

of yet smaller groups or single households.

Most users of welfare indicators rely, by necessity, on sample survey based estimates.

Table II demonstrates how much is gained by combining data sources. The second column

gives the sampling errors on headcount measures estimated for each stratum using the

survey data alone (taking account of sample design). There is only one estimate per

region as this is the lowest level at which the sample is representative. The population of

each region is in the third column. When combining census and survey data it becomes

possible to disaggregate to sub-regions and estimate poverty for speci¯c localities. Here we

choose as sub-regions parroquias or, in the cities of Quito and Guayaquil, zonas, because
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our prediction errors for these administrative units are similar in magnitude to the survey

based sampling error on the region level estimates. (See the median standard error among

sub-regions in the fourth column.) The ¯nal column gives the median population among

these sub-regions. Comparing the third and ¯nal columns it is clear that, for the same

prediction error commonly encountered in sample data, one can estimate poverty using

combined data for sub-populations of a hundredth the size. This becomes increasingly

useful the more there is spatial variation in well-being that can be identi¯ed using this

approach. Considering this question, Demombynes, et. al. (2002) ¯nd, for several

countries, that most sub-region headcount estimates do di®er signi¯cantly from their

region's average level.

We can also answer questions about the level and heterogeneity of welfare at di®erent

levels of governmental adminstration. Decomposing inequality in rural Ecuador into

between and within group components, we ¯nd that even at the level of parroquias 85% of

overall rural inequality can still be attributed to di®erences within groups. Thus, as often

suggested by anecdotal evidence, even within local communities there exists a considerable

heterogeneity of living standards. This may a®ect the likelihood of political capture

(Bardhan and Mookherjee (1999)), the functioning of local institutions, the feasibility of

raising revenues locally, and other issues of importance in political economy and public

policy. We expect that the empirical analysis of these issues will be strengthened by the
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micro-level information on distribution that the method described here can o®er.
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FOOTNOTES

1 We are very grateful to Ecuador's Instituto Nacional de Estadistica y Censo (INEC)

for making its 1990 unit-record census data available to us. Much of this research was

done while the authors were at the Vrije Universiteit, Amsterdam, and we appreciate

the hospitality and input from colleagues there. We also thank Don Andrews, Fran»cois

Bourguignon, Andrew Chesher, Denis Cogneau, Angus Deaton, Jean-Yves Duclos, Fran-

cisco Ferreira, Jesko Hentschel, Michiel Keyzer, Steven Ludlow, Berk }Ozler, Giovanna

Prennushi, Martin Ravallion, Piet Rietveld, John Rust and Chris Udry for comments

and useful discussions, as well as seminar participants at the Vrije Universiteit, ENRA

(Paris), U.C. Berkeley, Georgetown University, the World Bank and the Brookings Insti-

tution. Financial support was received from the Bank Netherlands Partnership Program.

However, the views presented here should not be taken to re°ect those of the World Bank

or any of its a±liates. All errors are our own.

2 One could consider estimating E(yjx) or the conditional density p(yjx) non-parametrically.

In estimating expenditure for each household in the populations of interest (perhaps to-

talling millions) conditioning on, say, thirty observed characteristics, a major di±culty

is to ¯nd a method of weighting that lowers the computational burden. See Keyzer and

Ermoliev (2000) and Tarozzi (2001) for examples and discussion.

3 Other sources of information could be merged with both census and survey datasets
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to explain location e®ects as needed. Geographic information system databases, for

example, allow a multitude of environmental and community characteristics to be geo-

graphically de¯ned both comprehensively and with great precision.

4 An estimate of the variance of the estimators can be derived from the information

matrix and used to construct a Wald test for homoscedasticity (Greene (2000), Section

12.5.3). Allowing the bounds to be freely estimated generates a standardized distribution

for predicted disturbances which is well behaved in our experience. This is particularly

important when using the standardized residuals directly in a semi-parametric approach to

simulation (see Section 6 below.) However, we have also found that imposing a minimum

bound of zero and a maximum bound A¤ = (1:05)maxfe2chg yields similar estimates of

the parameters ® . These restrictions allow one to estimate the simpler form ln
h

e2ch
A¤¡e2ch

i
= zTch®+ rch: Use of this form would be a practical approach for initial model selection.

5 In our experience, model estimates have been very robust to estimation strategy,

with weighted GLS estimates not signi¯cantly di®erent from the results of OLS or quantile

regressions weighted by expansion factors.

6 Our target is the level of welfare that could be calculated if we were fortunate

enough to have observations on expenditure for all households in a population. Clearly

because expenditures are measured with error this may di®er from a measure based on true

expenditures. See Chesher and Schluter (2002) for methods to estimate the sensitivity
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of welfare measures to mismeasurement in y:

7 The Gini coe±cient is an exception but it can be handled e®ectively with a separable

approximation. See Elbers, et. al. (2000).

8 The above discussion concerns the asymptotic properties of the welfare estimator, in

particular consistency. In practice we simulate the idiosyncratic variance for an actual

sub-population rather than calculate the asymptotic variance.

9 Although b¹ is a consistent estimator, it is biased. Our own experiments and analysis
by Saul Morris (IFPRI) for Honduras indicate that the degree of bias is extremely small.

We thank him for his communication on this point. Below we suggest using simulation

to integrate over the model parameter estimates, b³ , which yields an unbiased estimator.
10 To choose which variable means to include we estimate the model with only household-

level variables. We then estimate residual cluster e®ects, and regress them on variable

means to determine those that best identify the e®ect of location. We limit the chosen

number so as to avoid over-¯tting. The variance, ¾2´; of the remaining (weighted) cluster

random e®ect is estimated non-parametrically, allowing for heteroscedasticity in "ch. This

is a straightforward application of random e®ect modelling (e.g., Greene (2000), Section

14.4.2). An alternative approach based on moment conditions gives similar results.

11 In the results presented here, the constrained logistic model in footnote 3 was used

to model heteroscedasticity.
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TABLE I
Simulation Results

Measure Estimated Values Number of Households
100 1,000 15,000 100,000

Headcount ¹ 0.46 0.50 0.51 0.51
Total Standard Error 0.067 0.039 0.024 0.024
VI = Total Variance 0.75 0.24 0.04 0.02

General Entropy (0.5) ¹ 0.26 0.28 0.28 0.28
Total Standard Error 0.044 0.020 0.012 0.011
VI = Total Variance. 0.91 0.56 0.11 0.03

TABLE II
Improvement using Combined Data

Sample Data Only (region) Combined Data (sub-regions)
(2) (3) (4) (5)

Region S.E. of Estimate Population S.E. of Estimate Population
(1000s) Median Median (1000s)

Rural Sierra .027 2,509 .038 3.3
Rural Costa .042 1,985 .046 4.6
Rural Oriente .054 298 .043 1.2
Urban Sierra .026 1,139 .026 10.0
Urban Costa .030 1,895 .031 11.0
Urban Oriente .050 55 .027 8.0
Quito .033 1,193 .048 5.8
Guayaquil .027 1,718 .039 6.5
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TYPESCRIPT SYMBOLS LIST

xh (ex)

£ (multiplication)

¯ (beta)

F (calligraphic ef)

§ (capital sigma)

´ (eta)

" (epsilon)

¾ (sigma)

® (alpha)

³ (zeta)

¹ (mu)R
(integral)P
(summation)

v (nu)

2 (element of)

1 (in¯nity)

! (arrow right)
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· (kappa)

± (delta)

5 (nabla)

26


